
2.3 THE NEED FOR A WAVE FUNCTION 

From the classical theory of waves. We know that waves are characterized by an amplitude 

function such that the intensity of the wave at any point is determined by the square of the 

amplitude. 

Assuming that associated with each particle a wave function Ψ(𝑥, 𝑡) such that the absolute 

square of this function gives the intensity I: 

 

where * denotes complex-conjugation. 

For simplicity, we have taken  

• One-dimensional wave function but the treatment can be easily generalized to 3D. 

• |Ψ(𝑥, 𝑡) | is taken because the wave function is, in general, a complex quantity. 

• The intensity I, is a real, positive quantity. 

In the case of the double-slit experiment with particles, 

At some point on the screen let,  

 Ψ1 the wave function corresponding to the waves spreading from slit 1 with   I1 =  |Ψ1|  2 

 Ψ2 the wave function corresponding to the waves spreading from slit 2 with   I2 =  |Ψ2|2 

I1 , I2 : The corresponding intensities on the screen when only one slit is open. 

When both the slits are open, the resultant amplitude: 

 

 

 

 



 

 

We shall see in later that the wave function satisfies a linear equation which is known as the 

Schrödinger equation. 

The quantum mechanical wave function Ψ(𝑥, 𝑡) is an abstract quantity.  

Max Born, in 1926, suggested that the wave function must be interpreted statistically.as 

follows: 

If a particle is described by a wave function Ψ(𝑥, 𝑡), then the probability P(x) dx of finding the 

particle within an element dx about the point x at time t is; 

 

Since the probability of finding the particle somewhere must be unity, the wave function should 

be normalized so that 

 

That is, the wave function should be square integrable. 

 

2.4 Wave Packet and the Uncertainty Principle 

From the de Broglie relation;  𝑝 =
ℎ

𝜆
= ℏ𝑘 

where 𝑘 = 2𝜋 𝜆⁄ = propagation constant or the wave number.  

𝐸  is the energy of the particle 

𝜈  is the frequency of the associated wave 

 𝐸 = ℎ𝜈 = ℏ𝜔   is the Planck-Einstein relation 

𝜔 = 2𝜋𝜈  is the angular frequency of the wave. 

Let us consider a plane, monochromatic wave as a wave function to be associated with a 

particle,  

 



Which represents a simple harmonic disturbance of wavelength 𝜆 and frequency 𝜈, travelling 

towards the positive x-direction with velocity, 𝑣𝑝ℎ =
𝜔

𝑘
= phase velocity. 

The plane wave Ψ(𝑥, 𝑡) represents a particle having a momentum 𝑝 = ℏ𝑘.  

The probability density (the amplitude A is constant) 

 

P is independent of position. Thus, the particle has equal probability of being found anywhere.  

So, the question is: how to construct a wave function that can look like a particle?  

A particle can be represented by a wave packet. 

A wave packet can be formed by superposing plane waves of different wave numbers in such a 

way that they interfere with each other destructively outside of a given region of space. 

Let Ψ(𝑥, 𝑡) be a one-dimensional wave packet formed by  

of plane waves: 

 

where the amplitude A and the angular frequency 𝜔 depend on k. 

 

 

 

 

If Δ𝑥  is the spatial extent of a wave packet and Δ𝑘 is its wave number range, then it always 

happens that Δ𝑥 Δ𝑘 ≥ 1  Heisenberg’s uncertainty principle 

 

2.5 HEISENBERG’S UNCERTAINTY PRINCIPLE 

• In classical mechanics, 



The position x and the momentum p of a particle are independent of each other and can be 

simultaneously measured precisely.  

• In quantum mechanics,  

a particle is represented by a wave packet. The particle may be found anywhere within the 

region where the amplitude of the wave function Ψ(𝑥) is nonzero. 

 How precisely we can determine the position and the momentum of a particle simultaneously?  

By using the relation Δ𝑥 Δ𝑘 ≥ 1 and 𝑝 = ℏ𝑘 we obtain Δ𝑥 Δ𝑝 ≥ ℏ 

This is Heisenberg’s uncertainty relation for position and momentum. 

It states that it is not possible to specify both the position and the momentum  of a particle 

simultaneously with arbitrary precision; the product of the  uncertainties in the position and the 

momentum is always greater than a quantity of order ℏ. 

It is important to note that there is no uncertainty relation between one 

cartesian component of the position vector of a particle and a different 

cartesian component of the momentum. 

Energy-Time Uncertainty Relation 

The energy E of a free particle of mass m and momentum p is 

 

The uncertainty in time ∆𝑡 =
∆𝑥

𝑣
 

 

 

PROBLEM: Calculate the uncertainty in the momentum of a proton confined in a nucleus of 

radius  10−14𝑚. From this result, estimate the kinetic energy of the proton. 



 

PROBLEM: The lifetime of a nucleus in an excited state is 10−12𝑠. Calculate the probable 

uncertainty in the energy and frequency of a 𝛾-ray photon emitted by it. 

 

PROBLEM: Using the uncertainty principle, show that an alpha particle can exist inside a 

nucleus. 



 

2.6 summery about wavefunction 

In Quantum Mechanics, a “particle” (e.g. an electron) does not follow a definite trajectory 

𝒓(𝑡), 𝒑(𝑡) but rather it is best described as being distributed through space like a wave. 

Wavefunction Ψ(𝑥): is a wave representing the spatial distribution of a “particle”. 

• e.g. electrons in an atom are described by a wavefunction centred on the nucleus. 

Ψ(𝑥): is a function of the coordinates defining the position of the classical particle 

One-dimension (1D) time independent Ψ(𝑥) 

Three-dimension (3D) time independent Ψ(𝒓) = Ψ(𝑥, 𝑦, 𝑧) = Ψ(𝑟, 𝜃, 𝜙) (e.g. atoms)  

Ψ may be time dependent   e.g. Ψ(𝑥, 𝑡) 𝑎𝑛𝑑 Ψ(𝒓, 𝑡) = Ψ(𝑥, 𝑦, 𝑧, 𝑡) = Ψ(𝑟, 𝜃, 𝜙, 𝑡)  

 



Interpretation of the Wavefunction 

• In QM, a “particle” is distributed in space like a wave.   

• We cannot define a position for the particle. 

• Instead, we define a probability of finding the particle at any point in space. 

The Born Interpretation (1926): “The square of the wavefunction at any point in space is 

proportional to the probability of finding the particle at that point.” 

Note: the wavefunction (Ψ) itself has no physical meaning. 

If the wavefunction at point 𝑥 is Ψ(x), the probability of finding the particle in the 

infinitesimally small region 𝑑𝑥 between 𝑥 and 𝑥 + 𝑑𝑥 is: 

P(x) = |Ψ(x)|2 = Ψ∗Ψ 

|Ψ(x)|2  is the probability density 

|Ψ(x)| is the magnitude of Ψ at point 𝑥 

probability must be real and positive (0 ≤ 𝑃 ≤ 1) 

 

Normalization of the Wavefunction 

We return now to the statistical interpretation of the wave function, which says that  𝑝(𝑥) = 

|Ψ(𝑥, 𝑡)|2 is the probability density for finding the particle at point x, at time t. It follows that 

the integral of |ΨΨ∗|2 must be 1 (one) (the particle's got to be somewhere): 

𝑃𝑡𝑜𝑡 = ∫|Ψ(𝑥, 𝑡)|2𝑑𝑥 = 1

∞

−∞

 

Since the probability must be (one) for finding the particle somewhere, the wave function must 

be normalized. 

For three dimensions  

𝑃𝑡𝑜𝑡 = ∫|Ψ(𝑥, 𝑦, 𝑧, 𝑡)|2𝑑𝑥𝑑𝑦𝑑𝑧 = ∫ |Ψ(𝒓, 𝑡)|2𝑑𝒓 = 1

∞

−∞

∞

−∞

 

In this case, Ψ is said to be a normalized wavefunction 

 

 

 



How to Normalize the Wavefunction 

If Ψ is not normalized, then: 

∫|Ψ(𝑥, 𝑡)|2𝑑𝑥 = 𝑁                            𝑁 ≠ 1

∞

−∞

 

A corresponding normalized wavefunction (Ψ𝑛𝑜𝑟𝑚) can be defined: 

Ψ𝑛𝑜𝑟𝑚 =
1

√𝑁
 Ψ 

such that    ∫ |Ψ𝑛𝑜𝑟𝑚(𝑥, 𝑡)|2𝑑𝑥 = 1
∞

−∞
 

The factor (
𝟏

√𝑵
) is known as the normalization constant. 

Quantization of the Wavefunction 

The Born interpretation of y places restrictions on the form of the wavefunction: 

(a) Ψ must be continuous (no breaks).  

 

 

(b) The gradient of Ψ is (
𝑑Ψ

𝑑𝑥
)  must be continuous. 

 

(c) Ψ must have a single value at any point in space. 

 

(d) Ψ must be finite everywhere. 

(e)  Ψ cannot be zero everywhere. 

Operators and Observables 

If Ψ is the wavefunction representing a system, we can write: 

�̂�Ψ = 𝑎Ψ 

Where a: Observable property of system (e.g. energy, momentum, dipole moment …) 

  �̂�:  Operator corresponding to observable a. 



This is an eigenvalue equation and can be rewritten as: 

�̂�Ψ: Operator �̂� acting on function Ψ (eigenfunction) 

𝑎Ψ: function Ψ multiplied by a number a (eigenvalue) 

(Note: Ψ can’t be cancelled). 

Examples:  

1- If �̂� =
𝑑

𝑑𝑥
 𝑎𝑛𝑑 Ψ = 𝑒𝑚𝑥 . Is the function Ψ an eigenfunction for the Operator �̂�. Show 

that. 

�̂�Ψ = aΨ 

𝑑

𝑑𝑥
(𝑒𝑚𝑥) = 𝑚𝑒𝑚𝑥 = 𝑚Ψ 

• The function 𝑒𝑚𝑥 is an eigenfunction for the Operator 
𝑑

𝑑𝑥
 

• The magnitude m is the eigenvalue for the Operator 
𝑑

𝑑𝑥
 

 

2- If �̂� =
𝑑

𝑑𝑥
 𝑎𝑛𝑑 Ψ = 𝑥3 . Is the function Ψ an eigenfunction for the Operator �̂�. Show that. 

�̂�Ψ = aΨ 

𝑑

𝑑𝑥
(𝑥3) = 3𝑥 

So  

�̂�Ψ ≠ aΨ 

• The function 𝑥3 is not an eigenfunction for the Operator 
𝑑

𝑑𝑥
 

3- If �̂� =
𝑑2

𝑑𝑥2
 𝑎𝑛𝑑 Ψ = sin 𝑎𝑥 . Is the function Ψ an eigenfunction for the Operator �̂�. Show 

that. 

𝑑2

𝑑𝑥2
 (sin 𝑎𝑥) =

𝑑

𝑑𝑥
(

𝑑

𝑑𝑥
(sin 𝑎𝑥)) =

𝑑

𝑑𝑥
(𝑎 cos 𝑎𝑥) = −𝑎2  sin 𝑎𝑥 

𝑑2

𝑑𝑥2
 (sin 𝑎𝑥) = −𝑎2  sin 𝑎𝑥 

• The function (sin 𝑎𝑥) is an eigenfunction for the Operator 
𝑑2

𝑑𝑥2
 

• The magnitude (−𝑎2) is the eigenvalue for the Operator 
𝑑2

𝑑𝑥2
 

 

 


